1. Hamill J, Bensel CK. Biomechanical analysis of military boots: phase III. United States Army Technical Report NATICK/TR-96.013; dated Mar. 1996;11:42.
2. Yeo EX, Chhabra K, Kong PW. Influence of combat boot types on in-shoe forces and perceived comfort during unloaded and loaded walking. BMJ Mil Health. 2024;170(1):37-42. [
DOI:10.1136/bmjmilitary-2021-002061] [
PMID]
3. Stefanyshyn DJ, Nigg BM. Energy aspects associated with sport shoes. Sportverletz Sportschaden. 2000;14(3):82-9. [
DOI:10.1055/s-2000-7867] [
PMID]
4. Böhm H, Hösl M. Effect of boot shaft stiffness on stability joint energy and muscular co-contraction during walking on uneven surface. J Biomech. 2010;43(13):2467-72. [
DOI:10.1016/j.jbiomech.2010.05.029] [
PMID]
5. Stacoff A, Stüssi E. External stabilizers for the foot. Sportverletz Sportschaden. 1993;7(4):200-5. [
DOI:10.1055/s-2007-993508] [
PMID]
6. Avramakis E, Stakoff A, Stüssi E. Effect of shoe shaft and shoe sole height on the upper ankle joint in lateral movements in floorball (uni-hockey). Sportverletz Sportschaden. 2000;14(3):98-106. [
DOI:10.1055/s-2000-7869] [
PMID]
7. Mika A, Oleksy Ł, Mika P, Marchewka A, Clark BC. The influence of heel height on lower extremity kinematics and leg muscle activity during gait in young and middle-aged women. Gait Posture. 2012;35(4):677-80. [
DOI:10.1016/j.gaitpost.2011.12.001] [
PMID]
8. Cikajlo I, Matjačić Z. The influence of boot stiffness on gait kinematics and kinetics during stance phase. Ergonomics. 2007;50(12):2171-82. [
DOI:10.1080/00140130701582104] [
PMID]
9. Requiao LF, Nadeau S, Milot MH, Gravel D, Bourbonnais D, Gagnon D. Quantification of level of effort at the plantarflexors and hip extensors and flexor muscles in healthy subjects walking at different cadences. J Electromyogr Kinesiol. 2005;15(4):393-405. [
DOI:10.1016/j.jelekin.2004.12.004] [
PMID]
10. Greensword M, Aghazadeh F, Al-Qaisi S. Modified track shoes and their effect on the EMG activity of calf muscles. Work. 2012;41(S1):1763-70. [
DOI:10.3233/WOR-2012-0382-1763] [
PMID]
11. Blackburn JT, Hirth CJ, Guskiewicz KM. Exercise sandals increase lower extremity electromyographic activity during functional activities. J Athl Train. 2003;38(3):198-203.
12. Dobson JA, Riddiford-Harland DL, Steele JR. Effects of wearing gumboots and leather lace-up work boots on plantar loading when walking on a simulated underground coal mine surface. Footwear Science, 2018;10(3), 139-148. doi: 10.1016/j.apergo.2015.01.006. [
DOI:10.1016/j.apergo.2015.01.006] [
PMID]
13. Dobson JA, Riddiford-Harland DL, Steele JR. Effects of wearing gumboots and leather lace-up boots on lower limb muscle activity when walking on simulated underground coal mine surfaces. Appl Ergon. 2015;49:34-40. [
DOI:10.1016/j.apergo.2015.01.006] [
PMID]
14. Dobson JA, Riddiford-Harland DL, Bell AF, Wegener C, Steele JR. Effect of work boot shaft stiffness and sole flexibility on boot clearance and shank muscle activity when walking on simulated coal mining surfaces: implications for reducing trip risk. Ergonomics. 2022;65(8):1071-85. [
DOI:10.1080/00140139.2021.2016996] [
PMID]
15. Haghighat F, Rezaie M, Majlesi M. How boots affect the kinematics and kinetics of lower limb joints during walking compared to casual footwear. Sci Rep. 2024;14(1):18389. [
DOI:10.1038/s41598-024-68533-1] [
PMID]
16. Bini RR, Kilpp DD, Júnior PA, Muniz AM. Comparison of ground reaction forces between combat Boots and sports shoes. Biomechanics. 2021;1(3):281-9. [
DOI:10.3390/biomechanics1030023]
17. Zhang M, Shi H, Liu H, Zhou X. Biomechanical analysis of running in shoes with different heel-to-toe drops. Appl Sci. 2021;11(24):12144. [
DOI:10.3390/app112412144]